Double DES and Triple DES For IT $7^{\text {th }}$ Sem Students

Developed and Presented By:

Dileep Kumar Yadav
Assistant professor Dept. of CSE
V.B.S PU,Jaunpur

Mb. No. 8726943272
Email-dileep1482@gmail.com

Double DES

Intermediate CT

- Mathematically
$\mathrm{Ic}=\mathrm{Ek} 1(\mathrm{P})$
k1
$\mathrm{CT}=\operatorname{Ek} 2(\operatorname{Ek} 1(\mathrm{P}))$

k2
 Encryption Process

Cont...

Intermediate CT

Decryption Process

Problem of Double DES

- Markel and Hellman introduced encryption from one end and decryption from other end and matching the results in the middle hence the name "meet in the middle attack".

Meet in the Middle Attack

- Suppose that cryptanalysis knows two basic pieces of information P (a plain text block) and CT(corresponding the final cipher text block) for a message.

Temporary

Cont...

- The result of $1^{\text {st }}$ encryption is called as T and denoted

$$
\mathrm{T}=\mathrm{Ek} 1(\mathrm{P})
$$

- After this encryption the encrypted block is encrypted with another key k2 then

$$
\mathrm{CT}=\mathrm{Ek} 2(\operatorname{Ek} 1(\mathrm{P}))
$$

- Now the aim of the cryptanalysis who is armed with the knowledge of P and C is to obtain the values of k 1 and k 2 the cryptanalysis do...

Cont...

- Step 1- for all possible values of $2^{\wedge} 56$ of $k 1$ the cryptanalysis would use a large table in the memory of the computer and perform the following two points...
- 1-the cryptanalysis would encrypt the plain text block P by performing the $1^{\text {st }}$ encryption operation.

$$
\text { i.e. } T=\operatorname{Ek} 1(\mathrm{P})
$$

- 2-the cryptanalysis store the output of the operation Ek1(P) in temporary T and calculate

$$
\mathrm{CT}=\operatorname{Ek} 2(\operatorname{Ek} 1(\mathrm{P}))
$$

Cont...

- Step 2- for decryption process

$$
\begin{gathered}
\mathrm{T}=\mathrm{Dk} 2(\mathrm{CT}) \\
\mathrm{PT}=\operatorname{Dk} 1(\mathrm{Dk} 2(\mathrm{P}))
\end{gathered}
$$

- From above two steps

$$
\mathrm{T}=\operatorname{Ek} 1(\mathrm{P})=\mathrm{Dk} 2(\mathrm{CT})
$$

- Now if the cryptanalysis creates a table of $\operatorname{Ek} 1(\mathrm{P})$ for all possible values of k 1 and then perform Dk2(CT) for all possible values of $k 2$,so there is a chance that she or he gets the same T in both operation.

Cont...

- If the cryptanalysis is able to find the same T for both encryption with k 1 and decryption with k2,its means that the cryptanalysis knows not only P and C but he has been also able to find out the possible values of k 1 and k 2 .

Triple DES

- Although the meet in the middle attack on double DES is not quite practical yet in cryptography, but it is always better to minimum chances.
- As we can imagine triple DES is DES three times. It comes in two variations like...
- Triple DES with Three keys.
- Triple DES with two keys.

Triple DES with Three Keys

CT=Ek3(Ek2(Ek1(PT)))

Triple DES with Two Keys

Reference

- Cryptography and network security "Atul Kahate" 3e,Mc Graw hill education.

